

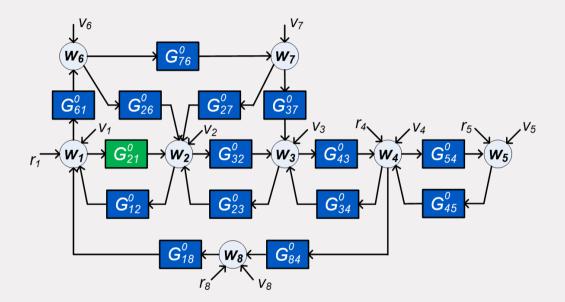
Single module identification – local direct method

Paul Van den Hof

Doctoral School Lyon, France, 11-12 April 2024

www.sysdynet.eu www.pvandenhof.nl p.m.j.vandenhof@tue.nl

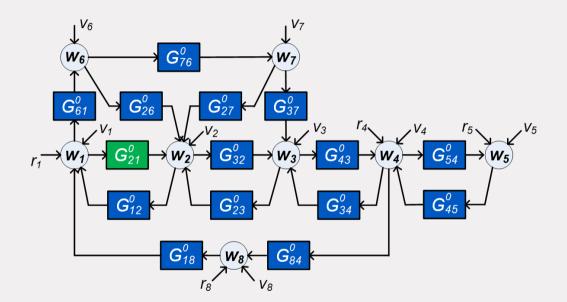
Single module identification



For a network with **known topology**:

- Identify G⁰₂₁ on the basis of measured signals
- Which signals to measure? Preference for local measurements
- When is there enough excitation / data informativity?

Single module identification



Different types of methods:

Indirect methods ^[1,2,3]

• Rely on mappings $r \rightarrow w$ and on sufficient excitation signals r

Direct methods^[1,2,4]

• Rely on mappings $w \rightarrow w$ and use excitation from both r and v signals

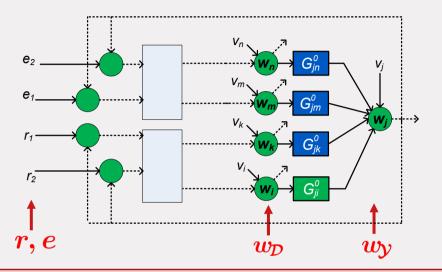
[1] PVdH et al., Automatica, 2013.[2] A.G. Dankers et al., IEEE-TAC, 2016.

3

[3] M. Gevers et al., SYSID 2018.

[4] K.R. Ramaswamy et al., IEEE-TAC, 2021.

Local direct method



$$arepsilon(t, heta) = ar{H}(q, heta)^{-1} [w_{\mathcal{Y}}(t) - ar{G}(q, heta) w_{\mathcal{D}}(t)]$$

- Estimate transfer $w_{\mathcal{D}} \rightarrow w_{\mathcal{Y}}$ and model the disturbance process on the output.
- consistent estimate and ML properties

Additional problem:

- If: v signals are correlated, i.e. $\Phi_v(\omega)$ non-diagonal, or
 - some in-neighbors of $w_{\mathcal{Y}}$ are not included in $w_{\mathcal{D}}$

then confounding variables can occur, destroying the consistency results

Single module identification

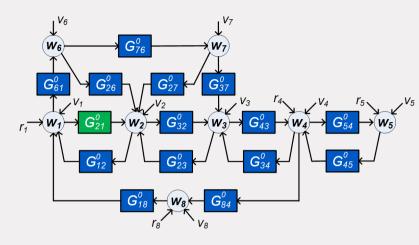
Local direct method:

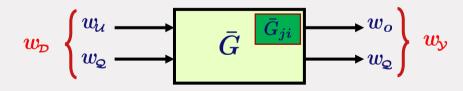
(consistency and minimum variance properties)

Select a subnetwork:

- Predicted outputs: $w_{\!\mathcal{Y}}$
- Predictor inputs: $w_{\mathcal{D}}$

such that prediction error minimization leads to an accurate estimate of G_{21}^0





Note: same node signals can appear in input and output

5

Single module identification

$$w_{\mathcal{D}} \left\{ \begin{array}{c} w_{\mathcal{U}} & \longrightarrow & \bar{G} \\ w_{\mathcal{Q}} & \longrightarrow & \bar{G} \end{array} \right\} \left. \begin{array}{c} \bar{G}_{ji} & \longrightarrow & w_{o} \\ & & & & & \\ & & & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ & & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ & & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ & & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ & & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ & & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \left. \left. \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \right. \right. \right. \right\} \left. \left. \left. \left. \left. \left. \begin{array}{c} w_{\mathcal{D}} & & \\ \end{array} \right\} \right. \right. \right\} \left. \left. \left. \left. \left. \left. \left. \left. \right. \right\right\} \right. \right. \right\} \left. \left. \left. \left. \left. \left. \left. \left. \right\right\} \right. \right\right\} \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \right\right\} \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \right\right\} \right. \left. \left. \left. \left. \left. \left. \left. \left.$$

Conditions for arriving at an accurate (consistent) model estimate:

- 1. Module invariance: $\bar{G}_{ji} = G_{ji}^0$ when removing discarded nodes (immersion)
- 2. Handling of confounding variables
- 3. Data-informativity
- 4. Technical condition on presence of delays (avoiding algebraic loops)

Single module identification - confounding variables

Confounding variables ^{[1][2]}:

Unmeasured signal that has (unmeasured) paths to both the input and output of an estimation problem.

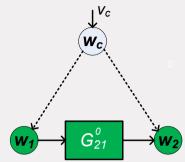
In networks they can appear in two different ways:

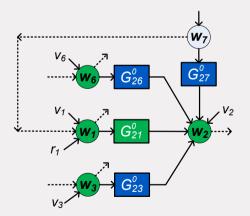
Direct:

• If disturbances on inputs and outputs are correlated.

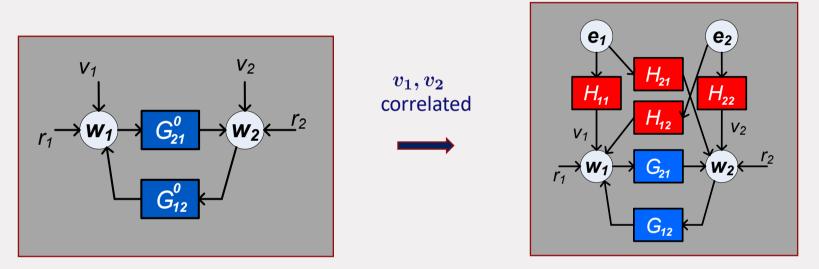
Indirect:

• If non-measured in-neighbors of an output affect signals in the inputs.

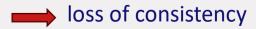




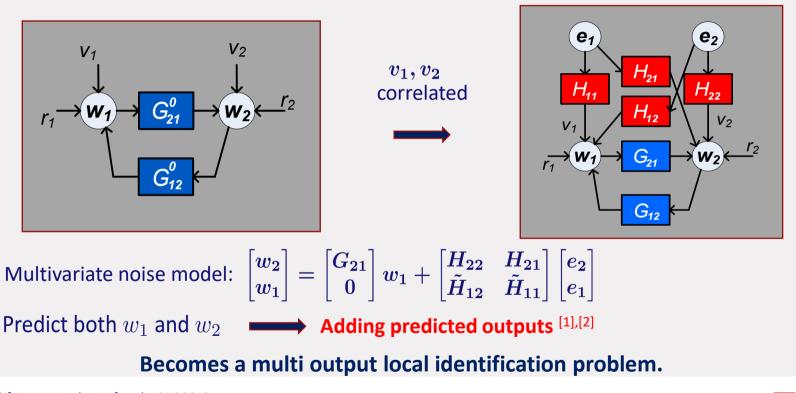
• Direct confounding variable:



Typically not treated in direct methods of closed-loop identification

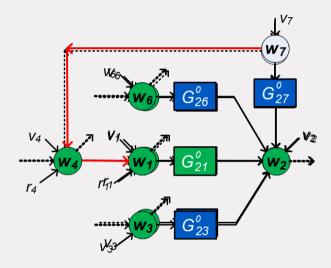


• Direct confounding variable:



P.M.J. Van den Hof et al., CDC 2019.
 K.R. Ramaswamy et al., IEEE-TAC, 2021.

• Indirect confounding variable:



Non-measurable w_7 is a confounding variable

Two possible solutions:

1. Include
$$w_4 \longrightarrow$$
 add predictor input
 $w_D = \{w_1, w_3, w_4, w_6\} \quad w_Y = \{w_2\}$
2. Predict w_1 too \longrightarrow add predictor output
 $w_D = \{w_1, w_3, w_6\} \quad w_Y = \{w_1, w_2\}$

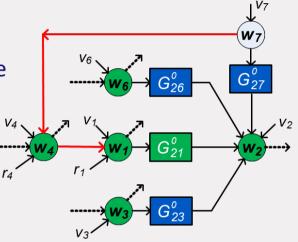
• There are degrees of freedom in choosing the predictor model

Handling confounding variables in local module identification

``Blocking'' confounding variables by adding predictor inputs

By adding w_4 as predictor input, new confounding variable for $w_4 \rightarrow w_2$. Does this help?

Yes. Since we do not need an accurate model of G_{24}

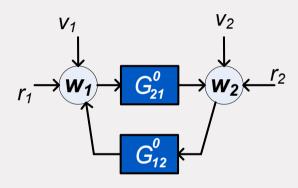


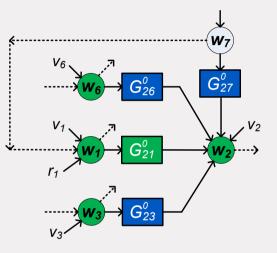
Handling confounding variables in local module identification

Confounding variables and closed-loop mechanisms

In closed-loop case (when predicting only w_2):

- Correlation between w_1 and v_2 is no problem, as long as it passes through w_2 .
- Correlation between v_1 and v_2 is a problem.





Algorithm for dealing with confounding variables

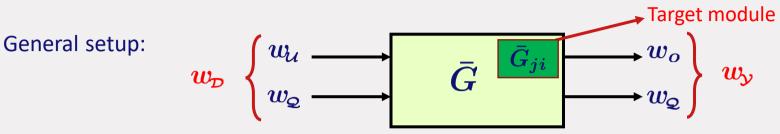
For estimating target module G_{ji}

- 1. Select input w_i and output w_j
- 2. Add inputs to satisfy the parallel path and loop condition
- 3. Check on direct confounding variables \rightarrow add output and return to step 2
- 4. Check on indirect confounding variables
 - a) Add output and return to step 2, OR
 - b) Add input

Algorithm always reaches a convergence point where conditions are satisfied.

The choice options lead to different end-results for signals to be included \longrightarrow different predictor models that all can reach consistency of \hat{G}_{ji}

Local direct method



Different algorithms for satisfying the 2 conditions (module invariance and conf. var.):

- Full input case:
- Minimum input:
- User selection case (inputs first) :

include all in-neighbors of $w_{y}^{[1]}$ maximize number of outputs^[2]

- : dedicated choice based on measurable nodes^[2]
- User selection case (outputs first) : dedicated choice based on measurable nodes^[3]

Local direct method – Explanation of algorithms

All nodes are measurable:

Full input case: For every (added) output, include all in-neighbors as inputs

Minimum input case: Every (added) input is copied to the output in case of a confounding variable

Preselected set of measured nodes (satisfying PPL test):

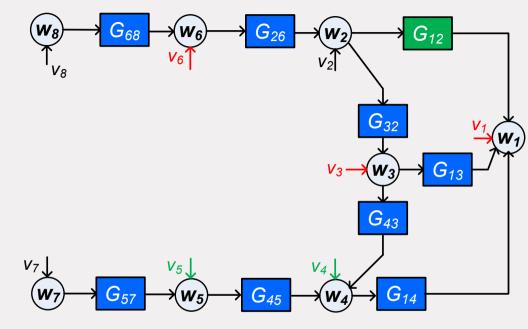
User selection (inputs first): For every (added) output, include all in-neighbors in the immersed network as inputs

User selection (outputs first): All signals that have a (sequence of linked) confounding variable(s) to the target output are included in the output. All in-neighbors in the immersed network are included as inputs

A.G. Dankers et al., TAC 2016.
 K.R. Ramaswamy et al., TAC 2021.
 S. Shi et al., IFAC 2023.

Different strategies – direct method

- Full input case
- User selection case (inputs first)
- Minimum input case



Network with v_1 correlated with v_3 and v_6 . v_4 correlated with v_5 .

Full input case

We include all in-neighbors of the predicted outputs as predictor inputs

Maximum use of information in signals

 $w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3,4\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1\}$

Handling direct confounding variable:

$$w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3,4\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1,3\}$$

Handling indirect confounding variable:

$$w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3,4,6\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1,3\}$$

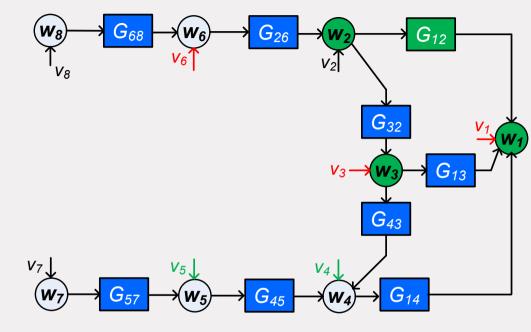
G_{68} G_{26} G_{12} V_2 V₈ G_{32} G G_{43} **V**₇ **V**5 VA G57 G14 G_{45} W7

Direct identification $w_{\!\scriptscriptstyle \mathcal{D}} o w_{\!\scriptscriptstyle \mathcal{Y}}$

Minimum input case

- Select signals to satisfy the parallel path and loop condition
- Handle all confounding variables by including signals in output

$$w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1,2,3\}$$

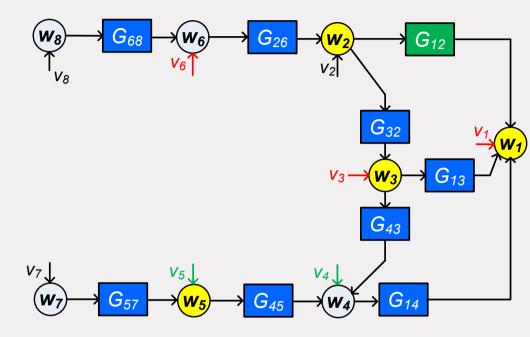


Direct identification $w_{\!\scriptscriptstyle \mathcal{D}} o w_{\!\scriptscriptstyle \mathcal{Y}}$

User selection case

- The user does not have access to all node signals
- Four node signals can be measured
- Parallel path and loop condition is satisfied
- Start with:

 $w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1\}$



User selection case (inputs first)

$$w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1\}$$

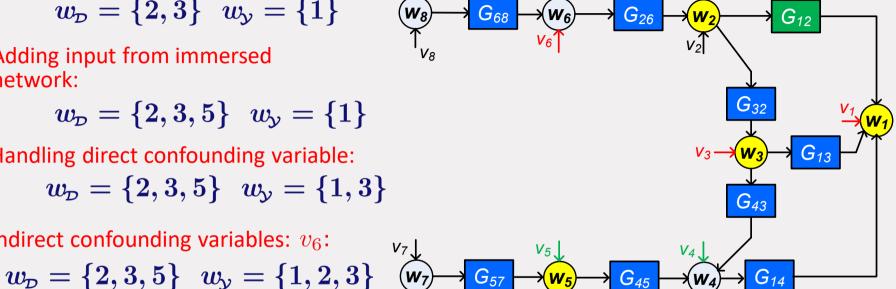
Adding input from immersed network:

$$w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3,5\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1\}$$

Handling direct confounding variable:

Indirect confounding variables: v_6 :

$$w_{\!\scriptscriptstyle \mathcal{D}} = \{2,3,5\} \;\; w_{\!\scriptscriptstyle \mathcal{Y}} = \{1,3\}$$



Confounding variable on w_5 induced by (v_4, v_5) is OK as it can be moved to set \mathcal{B} Direct identification $w_{\mathcal{D}} \rightarrow w_{\mathcal{V}}$

User selection case (outputs first)

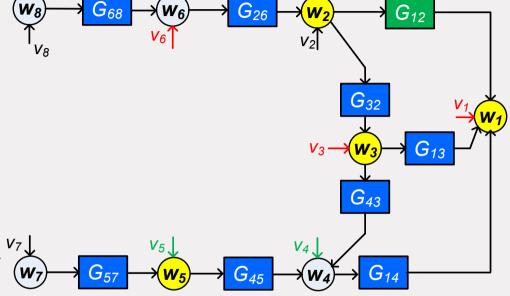
Select as outputs those node signals with confounding variables with the target output node:

 $w_{\mathcal{Y}} = \{1, 2, 3, 5\}$

Add appropriate inputs to each of these output nodes:

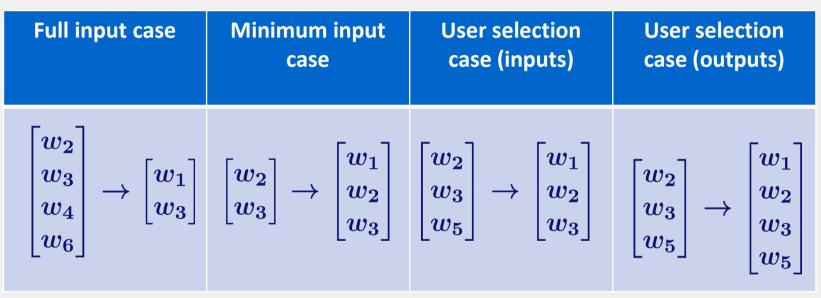
$$w_{\mathcal{D}} = \{2,3,5\} \quad w_{\mathcal{Y}} = \{1,2,3,5\} \stackrel{\mathsf{v_7}}{\longrightarrow} \stackrel{\mathsf{v_5}}{\longrightarrow} \stackrel{\mathsf{v_5}}{\longrightarrow} \stackrel{\mathsf{v_4}}{\longrightarrow} \stackrel{\mathsf{v_4}}{\longrightarrow} \stackrel{\mathsf{v_4}}{\longrightarrow} \stackrel{\mathsf{v_4}}{\longrightarrow} \stackrel{\mathsf{v_4}}{\longrightarrow} \stackrel{\mathsf{v_4}}{\longrightarrow} \stackrel{\mathsf{v_6}}{\longrightarrow} \stackrel{\mathsf{v_6}}{\to} \stackrel{\mathsf{v_6}}{\longrightarrow} \stackrel{\mathsf{v_6}}{\to}$$

Direct identification $w_{D}
ightarrow w_{V}$



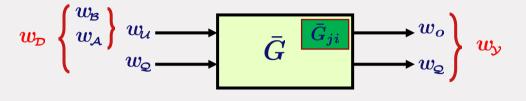
Different strategies for same network and target module

Same network with different identification setups that lead to **consistent estimate of the target module** with **Maximum likelihood properties** based on the strategy used.



Data informativity conditions might be different (see later)

Structural conditions for consistency of target G_{ji}



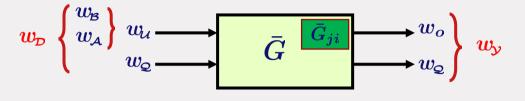
1) PPL condition

2) Confounding variable conditions:

- $i \in \mathcal{Q} \cup \mathcal{A}; j \in \mathcal{Y}$
- No confouding variables between w_A and w_y
- No confouding variables between w_A and w_B
- No unmeasured paths from $\{i, j\}$ to $w_{\!\scriptscriptstyle\mathcal{B}}$

These conditons can always be satisfied by appropriate choices of w_A, w_B, w_Q and influence the selection of the predictor model

Structural conditions for consistency of target G_{ji}



1) PPL condition

2) Confounding variable conditions:

- $i \in \mathcal{Q} \cup \mathcal{A}; j \in \mathcal{Y}$
- No confouding variables between w_A and w_Y
- No confouding variables between w_A and w_B
- No unmeasured paths from $\{i, j\}$ to $w_{\!\scriptscriptstyle\mathcal{B}}$

Confounding variables between $w_{\!\mathcal{B}}$ and $w_{\!\mathcal{Y}}$ do not hurt.

Analysis – from network to predictor model

Theory for single module direct method (MIMO)

Separate the node variables of the network into

$$w = \begin{bmatrix} w_{\mathcal{Q}} \\ w_o \\ w_u \\ w_z \end{bmatrix} = \begin{bmatrix} nodes \text{ that appear in input and output} \\ output \text{ of target module, if not present in } w \\ nodes \text{ that appear only in the input} \\ unmeasured nodes \end{bmatrix}$$

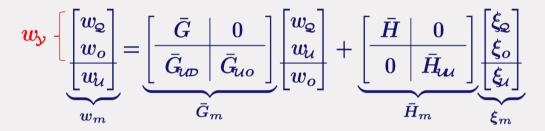
and write the network equations:

$$\begin{bmatrix} w_{\mathbb{Q}} \\ w_{0} \\ w_{\mathcal{U}} \\ w_{\mathbb{Z}} \end{bmatrix} = \begin{bmatrix} G_{\mathbb{Q}\mathbb{Q}} & G_{\mathbb{Q}0} & G_{\mathbb{Q}\mathcal{U}} & G_{\mathbb{Q}\mathbb{Z}} \\ G_{\mathbb{Q}\mathbb{Q}} & G_{00} & G_{00} & G_{00} & G_{00} \\ G_{\mathbb{Q}\mathbb{Q}} & G_{00} & G_{\mathbb{U}\mathcal{U}} & G_{00} \\ G_{\mathbb{U}\mathbb{Q}} & G_{\mathbb{U}0} & G_{\mathbb{U}\mathcal{U}} & G_{\mathbb{U}\mathbb{Z}} \\ G_{\mathbb{Z}\mathbb{Q}} & G_{\mathbb{Z}0} & G_{\mathbb{Z}\mathcal{U}} & G_{\mathbb{Z}\mathbb{Z}} \end{bmatrix} \begin{bmatrix} w_{\mathbb{Q}} \\ w_{0} \\ w_{\mathcal{U}} \\ w_{\mathcal{U}} \end{bmatrix} + R(q)r + \begin{bmatrix} H_{\mathbb{Q}\mathbb{Q}} & H_{\mathbb{Q}0} & H_{\mathbb{Q}\mathcal{U}} & H_{\mathbb{Q}\mathbb{Z}} \\ H_{0\mathbb{Q}} & H_{00} & H_{0\mathcal{U}} & H_{0\mathbb{Z}} \\ H_{\mathbb{U}\mathbb{Q}} & H_{\mathbb{U}0} & H_{\mathbb{U}\mathcal{U}} & H_{\mathbb{U}\mathbb{Z}} \\ H_{\mathbb{Z}\mathbb{Q}} & H_{\mathbb{Z}0} & H_{\mathbb{Z}\mathcal{U}} & H_{\mathbb{Z}\mathbb{Z}} \end{bmatrix} \begin{bmatrix} e_{\mathbb{Q}} \\ e_{0} \\ e_{1} \\ e_{2} \end{bmatrix}$$

Then remove node variables w_{z} from the equations through immersion

Theory for single module direct method (MIMO)

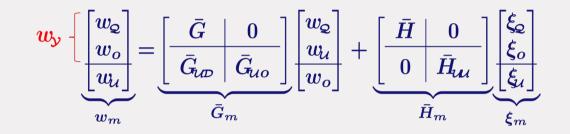
Upon immersing node variables w_z there exists a system transform into the equivalent network representation



with ξ_m a white noise process, \overline{H}_m square, monic, stable and stably invertible. I.e. the number of noise sources is reduced to match $dim(w_m)$.

Under the conditions on the confounding variables, the disturbances on w_y and w_u can be decoupled $\rightarrow \bar{H}_m$ becomes block-diagonal.

Theory for single module direct method (MIMO)



Upper part of the equation leads to:

$$\underbrace{\begin{bmatrix} w_{Q} \\ w_{o} \end{bmatrix}}_{w_{\mathcal{Y}}} = \underbrace{\begin{bmatrix} \bar{G}_{QQ} & \bar{G}_{Q\mathcal{A}} \\ \bar{G}_{QQ} & \bar{G}_{d\mathcal{A}} \end{bmatrix}}_{\bar{G}} \underbrace{\begin{bmatrix} w_{Q} \\ w_{\mathcal{U}} \end{bmatrix}}_{w_{\mathcal{D}}} + \underbrace{\begin{bmatrix} \bar{H}_{QQ} & \bar{H}_{Qo} \\ \bar{H}_{QQ} & \bar{H}_{Oo} \end{bmatrix}}_{\bar{H}} \underbrace{\begin{bmatrix} \xi_{Q} \\ \xi_{o} \end{bmatrix}}_{\xi_{\mathcal{Y}}}$$

to be used for identification

Completing the predictor model with excitation signals

Local direct method

Incorporating the role of external signals:

Original (full) network model: $w(t) = G(q)w(t) + \underbrace{u(t)}_{R(q)r(t)} + H(q)e(t);$

Predictor model (subset of nodes):

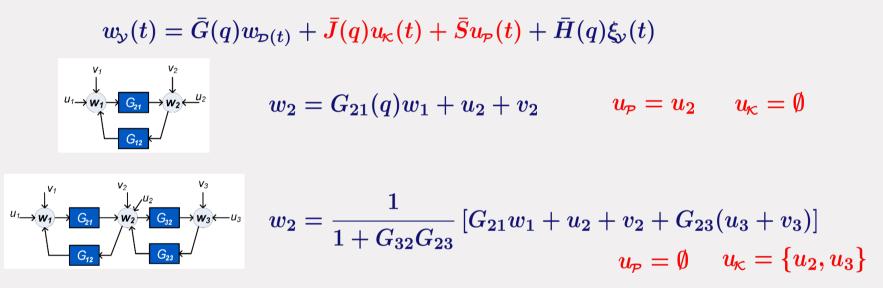
 $w_{\mathcal{Y}}(t) = \bar{G}(q)w_{\mathcal{D}(t)} + \bar{J}(q)u_{\kappa}(t) + \bar{S}u_{\mathcal{P}}(t) + \bar{H}(q)\xi_{\mathcal{Y}}(t)$

Effect of u on w_y can appear in three different ways:

- 1. Incorporated in input w_{D}
- 2. With a dynamic term $ar{J}(q)$
- 3. With a constant unit-term in \bar{S} (binary matrix)

Local direct method

Examples for different roles of u:



Dynamic term $\overline{J}(q)$ can be left unmodelled \rightarrow higher level of ``disturbances'' Alternative: estimate the term with measured input $u_{\kappa}(t)$

Local direct method – predictor model

Based on:

$$w_{\mathcal{Y}}(t) = \bar{G}(q)w_{\mathcal{D}(t)} + \bar{J}(q)u_{\mathcal{K}}(t) + \bar{S}u_{\mathcal{P}}(t) + \bar{H}(q)\xi_{\mathcal{Y}}(t)$$

we construct the (parametrized) prediction error:

 $\varepsilon(t,\theta) = \bar{H}(q,\theta)^{-1}[w_{\mathcal{Y}}(t) - \bar{G}(q,\theta)w_{\mathcal{D}}(t) - \bar{J}(q,\theta)u_{\mathcal{K}}(t) - \bar{S}u_{\mathcal{P}}(t)]$

Quadratic identification criterion:
$$\hat{ heta}_N := rgmin_{ heta} rac{1}{N} \sum_{t=0}^{N-1} arepsilon(t, heta)^T Q arepsilon(t, heta) \qquad Q>0$$

Characteristic of 'direct' method: no postprocessing of estimate required. The target module G_{ji} is directly estimated as one of the modules in $\overline{G}(q)$.

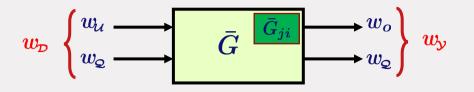
Local direct method

Determining the different roles of excitation signals:

Given \mathcal{Y} and \mathcal{D} , the sets \mathcal{P} and \mathcal{K} are determined through graphical conditions^[1,2,3]:

- For $\ell\in\mathcal{Q}$, $u_\ell\in u_{_{\mathcal{P}}}$ if all loops around w_ℓ pass through a node in $w_{_{\mathcal{D}}}$
- $u_o \in u_P$ if all loops around w_o pass through a node in w_D and all paths from w_o to w_Q pass through a node in w_u .
- $u_{\mathcal{Y}} \in u_{\mathcal{K}}$ if $u_{\mathcal{Y}} \notin u_{\mathcal{P}}$
- For $\ell \notin \{\mathcal{Y} \cup \mathcal{D}\}$, $u_\ell \in u_\kappa$ if w_ℓ has a direct or unmeasured path to w_y

Consistency result



 $G_{ji}(q, \hat{ heta}_N)$ is a consistent estimate of G_{ji}^0 , if

- $\mathcal{S} \in \mathcal{M}$
- Structural conditions on the predictor model are satisfied
 - Parallel path and loop (PPL) condition
 - Confounding variable conditions
- Data set is informative with respect to $\ensuremath{\mathcal{M}}$
- A technical condition on presence of delays is satisfied

According to PEM/ML theory, the estimator can achieve the CRLB

K.R. Ramaswamy et al., IEEE-TAC, 2021.
 VdH et al., CDC-2020.

Data-informativity

Data informativity (classical definition)

 $w_{\mathcal{Y}}(t) = \bar{G}(q,\theta)w_{\mathcal{D}}(t) + \bar{H}(q,\theta)\xi_{\mathcal{Y}}(t) + \bar{J}(q,\theta)u_{\mathcal{K}}(t) + \bar{S}u_{\mathcal{P}}(t)$

Predictor model: $\hat{w}_{\mathcal{Y}}(t, heta) = W(q, heta) z(t)$

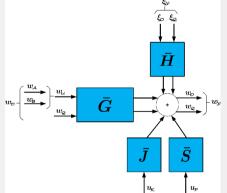
for a model set
$$\mathcal{M} := (\bar{G}(q,\theta), \bar{H}(q,\theta), \bar{J}(q,\theta))_{\theta \in \Theta}$$
 with $z(t) := \begin{bmatrix} \mathcal{D}(t) \\ \boldsymbol{\xi}_{\mathcal{V}}(t) \\ \boldsymbol{u}_{\mathcal{K}(t)} \end{bmatrix}$

Then a quasi-stationary data sequence $\{z(t)\}_{t=0,\dots}$ is informative with respect to \mathcal{M} if for any two models in \mathcal{M} :

$$ar{\mathbb{E}}[(W_1(q)\!-\!W_2(q))z(t)]^2=0\implies W_1(e^{i\omega})\equiv W_2(e^{i\omega})$$

A sufficient condition for this is that z is persistently exciting:

 $\Phi_z(\omega)>0~~ ext{for almost all}~\omega$



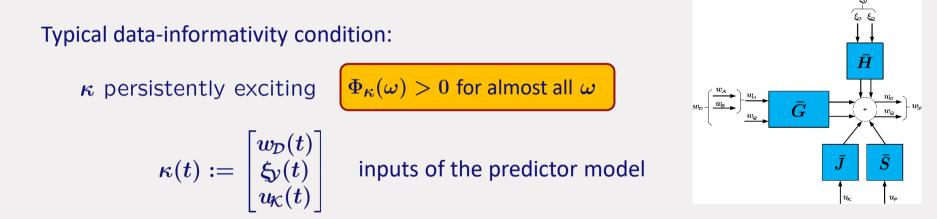
 $\left[w_{D}(t)\right]$

TU/e

Single module identification – data-informativity

Predictor model equation:

 $w_{\mathcal{Y}}(t) = \bar{G}(q,\theta)w_{\mathcal{D}}(t) + \bar{H}(q,\theta)\xi_{\mathcal{Y}}(t) + \bar{J}(q,\theta)u_{\mathcal{K}}(t) + \bar{S}u_{\mathcal{P}}(t)$



Rank-based condition can generically be satisfied based on a graph-based condition

[2] K.R. Ramaswamy et al., IEEE-TAC, 2021; VdH and Ramaswamy, CDC 2020.

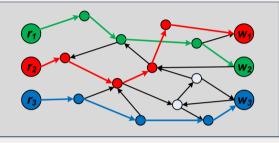
[3] X.Bombois et al., Automatica, 2023.

38

^[1] L. Ljung, 1989.

A signal w(t) = F(q)r(t) with r persistently exciting, is persistently exciting iff F has **full row rank**.

This condition can be verified in a generic sense, by considering the **generic rank** of $F^{[1],[2]}$



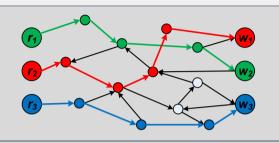
$$b_{\mathcal{R} o \mathcal{VV}} = 3$$

linking to the maximum number of vertex disjoint paths between inputs and outputs

F has generic full row rank if the number of vertex disjoint paths $b_{R \to W}$ satisfies $b_{R \to W} = dim(w)$

[1] Van der Woude, 1991
 [2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.

For persistence of excitation of κ this implies:



 $\frac{w_{\mathcal{D}}}{\xi_{\mathcal{Y}}}$

UK

 κ persistently exciting holds **generically** if there are $dim(\kappa)$ **vertex disjoint paths** between external signals $\{u, e\}$ and $\kappa =$

and since $\{\xi_{\mathcal{V}}, u_{\mathcal{K}}\}\$ are external signals too, this is equivalent to:

 $dim(w_{\mathcal{D}})$ vertex disjoint paths between $\{u,e\}ackslash \{\xi_{\mathcal{V}},u_{\mathcal{K}}\}$ and $w_{\mathcal{D}}$

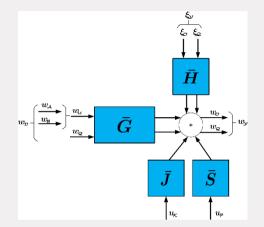
 $dim(w_{\mathcal{D}})$ vertex disjoint paths between $\{u,e\}ackslash\{\xi_{\mathcal{Y}},u_{\mathcal{K}}\}$ and $w_{\mathcal{D}}$

Excitation is provided by all external signals $\{u, e\}$ except for

- $\xi_{\mathcal{Y}}$: the white noise signals e that have a path to an output node or to a node that has a confounding variable with an output node
- u_{κ} : the excitation signals u that affect an output through unknown dynamics

Specific result for networks with full rank disturbances:

Every node signal in w_Q requires an excitation in w_P having a 1-transfer to w_Y



 $w_{\mathcal{Y}}(t) = \bar{G}(q,\theta)w_{\mathcal{D}}(t) + \bar{H}(q,\theta)\xi_{\mathcal{Y}}(t) + \bar{J}(q,\theta)u_{\mathcal{K}}(t) + \bar{S}u_{\mathcal{P}}(t)$

- For every node in $w_{\mathcal{Q}}$ we need a u-excitation
- More expensive experiments with growing # outputs
- A node $w_{\mathcal{Q}}$ whose excitation appears in $u_{\mathcal{K}}$ can never be sufficiently excited

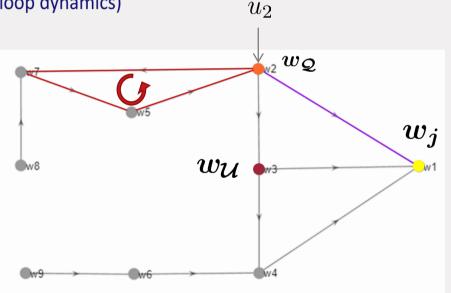
[1] VdH et al., IFAC 2023.

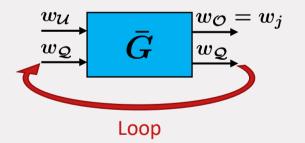
Data-informativity - Example

Target module: G_{12}

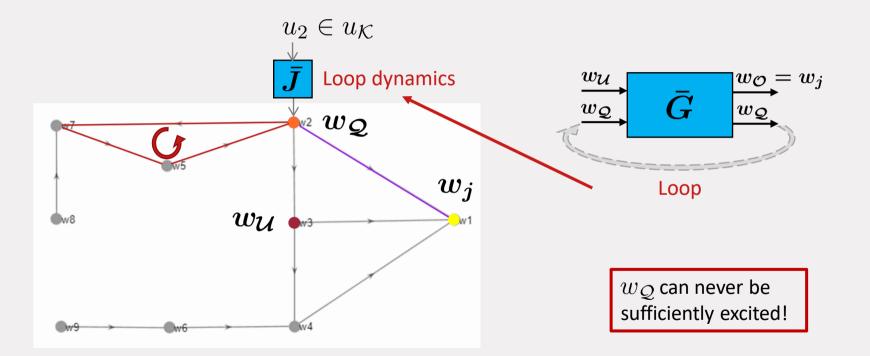
Because of confounding variable between w_2 and w_1 , predictor model is $(w_2, w_3)
ightarrow (w_1, w_2)$

An excitation u_2 on w_2 will affect w_2 through an unknown dynamic transfer function (loop dynamics) u_2



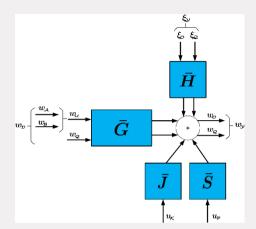


Data-informativity - Example



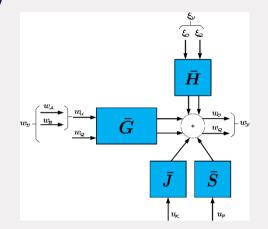
Observations:

- Since w_Q is an output, unmeasured disturbances on w_Q are modelled through a noise model. Their white noise sources are not available anymore more for excitation of \overline{G} .
- Data-informativity cannot always be guaranteed by providing a sufficient number of external excitation signals.
- (Additional) structural conditions on the predictor model need to be satisfied



Specific result for networks with **full rank disturbances**:

Every node signal in w_Q requires an excitation in w_P having a 1-transfer to w_Y



 $w_{\mathcal{Y}}(t) = \bar{G}(q,\theta)w_{\mathcal{D}}(t) + \bar{H}(q,\theta)\xi_{\mathcal{Y}}(t) + \bar{J}(q,\theta)u_{\mathcal{K}}(t) + \bar{S}u_{\mathcal{P}}(t)$

Additional condition for a node $w_{\mathcal{Q}}$ to be effectively ``excitable'':

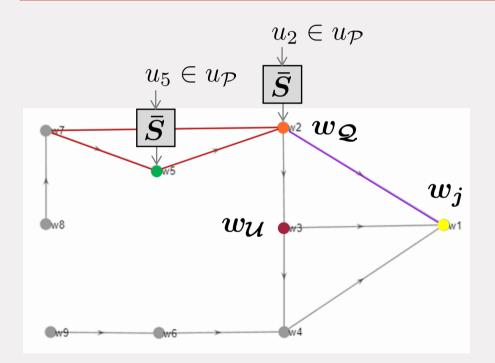
Every loop around a node in $w_{\mathcal{Q}}$ should be blocked by a node in $w_{\mathcal{D}}$.

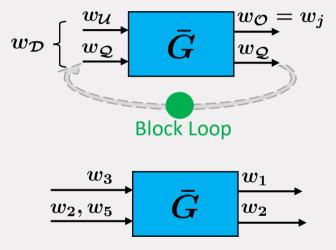
This additional graph-based condition needs to be integrated in the predictor model algorithms

Data-informativity - Example

Every loop around a node in $w_{\mathcal{Q}}$ should be blocked by a node in $w_{\mathcal{D}}$

 \longrightarrow add w_5 to $w_{\mathcal{D}}$





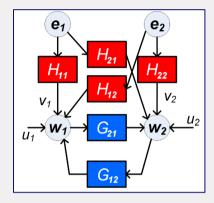
 w_2 , w_3 and w_5 need excitation, and u_2 and u_5 can be used for that

2-node example

Target: identify G_{21} with direct method

Predictor model:
$$\underbrace{\{w_1\}}_{w_D} \rightarrow \underbrace{\{w_1, w_2\}}_{w_Y}$$

 $w_Q = \{w_1\} \quad w_U = \emptyset$



Step 1:

Both u_1 and u_2 contribute to $u_{\mathcal{K}} \longrightarrow$ data informativity condition is not satisfied

Step 2: Change predictor model to: $\underbrace{\{w_1, w_2\}}_{w_D} \rightarrow \underbrace{\{w_1, w_2\}}_{w_Y}$ Both u_1 and u_2 contribute to $u_P \longrightarrow$ data informativity condition is satisfied

Both u_1 and u_2 need to be present, while an indirect method requires only u_1 !

Data informativity - summary

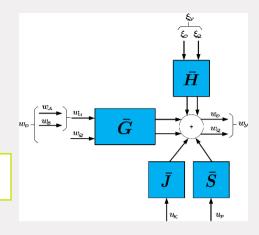
 $dim(w_{\mathcal{D}})$ vertex disjoint paths between $\{u,e\}ackslash \{\xi_{\!\mathcal{V}},u_{\!\mathcal{K}}\}$ and $w_{\!\mathcal{D}}$

- Disturbances $\xi_{\mathcal{Y}}$ can not be used for exciting $w_{\mathcal{D}}$ They are used for exciting the noise model

 $\Phi_{\kappa}(\omega) > 0$ for almost all ω $\kappa(t) := egin{bmatrix} w_{\mathcal{D}}(t) \ \xi_{\mathcal{Y}}(t) \ w_{\mathcal{D}}(t) \end{bmatrix}$

- For every signal in $w_{\mathcal{Q}}$ we need an u-excitation
- More "expensive" experiments with growing # outputs
- Additional structural condition:

Every loop around a node in $w_{\!\mathcal{Q}}$ should be blocked by a node in $w_{\!\mathcal{D}}$.



Data informativity - extension

So far, data-informativity conditions have been based on consistent estimation of the full predictor model, i.e. all entries in \bar{G}

It appears that the conditions can be further relaxed when focusing on the target module only!

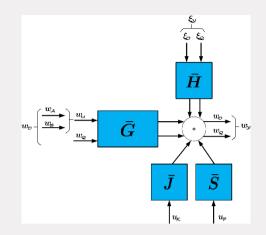
I.e., rather than requiring:

$$ar{\mathbb{E}}[(W^{(1)}(q) - W^{(2)}(q))z(t)]^2 = 0 \implies W^{(1)}(e^{i\omega}) \equiv W^{(2)}(e^{i\omega})$$

we can require:

$$ar{\mathbb{E}}[(W^{(1)}(q) - W^{(2)}(q))z(t)]^2 = 0 \implies G^{(1)}_{ji}(e^{i\omega}) \equiv G^{(2)}_{ji}(e^{i\omega})$$

These single module DI conditions are also implemented in the app/toolbox.



Algebraic loop condition

Algebraic loop condition

Well known in a standard closed-loop problem with the direct method: G(q)C(q) should be strictly proper, in the system and in the parametrized model.

In the local direct method for networks this becomes:

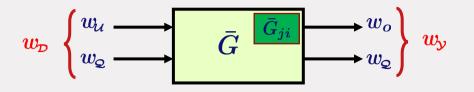
The following paths should have at least a delay:

1) All paths/loops from $w_{y \cup B}$ to w_y in the original network and in the parametrized model;

2) For every $w_k \in w_A$, all paths from $w_{y \cup B}$ to w_k in the original network, or all paths from w_k to w_y in the parametrized model.

Summary

Consistency result



 $G_{ji}(q, \hat{ heta}_N)$ is a consistent estimate of G_{ji}^0 , if

- $\mathcal{S} \in \mathcal{M}$
- Structural conditions on the predictor model are satisfied
 - Parallel path and loop (PPL) condition
 - Confounding variable conditions
- Data set is informative with respect to $\ensuremath{\mathcal{M}}$
- A technical condition on presence of delays is satisfied

According to PEM/ML theory, the estimator can achieve the CRLB

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.[2] VdH et al., CDC-2020.

Summary local direct method for single module ID

- Flexible algorithm for selecting measured signals in a predictor model
- that leads to consistent (and minimum variance) module estimates
- Verifiable conditions on the network topology (assumed a priori known)
- Path-based conditions also for (generic) data informativity
- For the actual identification algorithm: preferably regularized techniques
- Extensions:
 - effective use of *u*-signals can further relax the conditions for signal selection^[1]
 - include topology estimation as a first step^[2]

Identifiability and data informativity

- For a particular identification method:
 Consistency conditions include aspects of data-informativity and underlying conditions of identifiability (implicitly)
- Current consistency conditions can be split in (a) identifiability conditions and
 (b) data informativity conditions
- Network identifiability is identification method independent Reflects choice of predictor model:
 - presence and location of excitation and disturbance signals
 - parametrized model set (fixed modules and disturbance correlations)

56