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Single module identification
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For a network with 
known topology:

• Identify        on the basis of 
measured signals

• Which signals to measure? 
Preference for local 
measurements

• When is there enough 
excitation / data informativity?



Indirect  methods [1,2,3]

• Rely on mappings      
and on sufficient excitation
signals  

Single module identification
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Different types of methods:

Direct methods [1,2,4]

• Rely on mappings      
and use excitation from both

and     signals  

[3] M. Gevers et al., SYSID 2018.
[4] K.R. Ramaswamy et al., IEEE-TAC, 2021.[2] A.G. Dankers et al., IEEE-TAC, 2016.

[1] PVdH et al., Automatica, 2013.



- Estimate transfer                       and model
the disturbance process on the output.

- consistent estimate and ML properties 

Local direct method

[1] Dankers et al., IEEE-TAC, 2016; Dankers et al., IFAC 2017
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If: • signals are correlated, i.e.              non-diagonal, or 
• some in-neighbors of         are not included in   

then confounding variables can occur, destroying the consistency results

Additional problem:
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Single module identification
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Local direct method:
(consistency and minimum variance properties)

Select a subnetwork: 
• Predicted outputs: 
• Predictor inputs:
such that prediction error minimization leads to
an accurate estimate of 

Note: same node signals can appear in input and output



Single module identification
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Conditions for arriving at an accurate (consistent) model estimate:

1. Module invariance:                     when removing discarded nodes (immersion)  

2. Handling of confounding variables 

3. Data-informativity
4. Technical condition on presence of delays (avoiding algebraic loops)

2. Handling of confounding variables 



Data-driven modeling in linear dynamic networks7

.

Confounding variables



Single module identification - confounding variables
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0Confounding variables [1][2]: 
Unmeasured signal that has (unmeasured) paths to both the 
input and output of an estimation problem. 

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

In networks they can appear in two different ways:
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Direct:
• If disturbances on inputs and outputs are correlated.

Indirect:

• If non-measured in-neighbors of an output affect signals in
the inputs. 
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Confounding variables

• Direct confounding variable:
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correlated
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Typically not treated in direct methods of closed-loop identification 
loss of consistency 
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Confounding variables
• Direct confounding variable:
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Adding predicted outputs [1],[2]

Becomes a multi output local identification problem.
[1] P.M.J. Van den Hof et al. , CDC 2019.
[2] K.R. Ramaswamy et al., IEEE-TAC, 2021.

correlated

Multivariate noise model:
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Confounding variables
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Non-measurable       is a confounding variable

Two possible solutions:

add predictor output2. Predict too  

1. Include add predictor input 

• Indirect confounding variable:

• There are degrees of freedom in choosing the predictor model



By adding       as predictor input, new confounding variable
for                  .
Does this help? 

Handling confounding variables in local module identification

``Blocking’’ confounding variables by adding predictor inputs
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Yes.  Since we do not need an accurate model of 



Handling confounding variables in local module identification

Confounding variables and closed-loop mechanisms
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In closed-loop case 
(when predicting only      ):
• Correlation between

and      is no
problem, as long as it 
passes through      .

• Correlation between
and       is a problem.



Algorithm for dealing with confounding variables

1. Select input       and output   
2. Add inputs to satisfy the parallel path and loop condition
3. Check on direct confounding variables  add output and return to step 2
4. Check on indirect confounding variables  

a) Add output and return to step 2, OR
b) Add input 
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For estimating target module 

Algorithm always reaches a convergence point where conditions are satisfied. 

The choice options lead to different end-results for signals to be included
different predictor models



Local direct method
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General setup: 
Target module

Different algorithms for satisfying the 2 conditions (module invariance and conf. var.):   

• Full input case: include all in-neighbors of      [1]

• Minimum input: maximize number of outputs[2]

• User selection case (inputs first) : dedicated choice based on measurable nodes[2]

• User selection case (outputs first) : dedicated choice based on measurable nodes[3]

[1] A.G. Dankers et al., TAC 2016. 
[2] K.R. Ramaswamy et al., TAC 2021.
[3] S. Shi et al., IFAC 2023.



Local direct method – Explanation of algorithms
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Full input case:

[1] A.G. Dankers et al., TAC 2016. 
[2] K.R. Ramaswamy et al., TAC 2021.
[3] S. Shi et al., IFAC 2023.

For every (added) output, include all in-neighbors as inputs

Minimum input case: Every (added) input is copied to the output in case of a 
confounding variable

All nodes are measurable:

Preselected set of measured nodes (satisfying PPL test):

User selection (inputs first):

User selection (outputs first):

For every (added) output, include all in-neighbors in the 
immersed network as inputs

All signals that have a (sequence of linked) confounding 
variable(s) to the target output are included in the output. 
All in-neighbors in the immersed network are included as  
inputs



Different strategies – direct method

• Full input case

• User selection case (inputs first)

• Minimum input case
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Network with 𝑣𝑣1 correlated with 𝑣𝑣3 and 𝑣𝑣6.
𝑣𝑣4 correlated with 𝑣𝑣5. 
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Full input case
We include all in-neighbors of the 
predicted outputs as predictor inputs
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Handling indirect confounding variable:

Maximum use of information in signals

Handling direct confounding variable:

Direct identification 
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Minimum input case
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Direct identification 
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• Select signals to satisfy the 
parallel path and loop condition

• Handle all confounding variables 
by including signals in output



User selection case

• The user does not have access 
to all node signals
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• Four node signals can be 
measured
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• Parallel path and loop condition is 
satisfied

• Start with:



User selection case (inputs first)
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Handling direct confounding variable:

Indirect confounding variables:

Direct identification 

Adding input from immersed 
network:



User selection case (outputs first)
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Add appropriate inputs to each of 
these output nodes:

Direct identification 

Select as outputs those node signals 
with confounding variables with the 
target output node:



Different strategies for same network and target module
Same network with different identification setups that lead to consistent estimate of the 
target module with Maximum likelihood properties based on the strategy used.
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Full input case Minimum input 
case

User selection 
case (inputs)

User selection 
case (outputs)



Structural conditions for consistency of target 
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2) Confounding variable conditions:

1) PPL condition



Structural conditions for consistency of target 
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2) Confounding variable conditions:

1) PPL condition



Data-driven modeling in linear dynamic networks26

.

Analysis – from network to predictor model



Theory for single module direct method (MIMO)
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Separate the node variables of the network into

and write the network equations:

Then remove node variables        from the equations through immersion



Theory for single module direct method (MIMO)
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Upon immersing node variables       there exists a system transform into the 
equivalent network representation

with       a white noise process,        square, monic, stable and stably invertible. 

Under the conditions on the confounding variables, the disturbances on             
and       can be decoupled  becomes block-diagonal.

I.e. the number of noise sources is reduced to match                  .



Theory for single module direct method (MIMO)
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Upper part of the equation leads to:

to be used for identification



Data-driven modeling in linear dynamic networks30
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Completing the predictor model with excitation signals



Local direct method 
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Original (full) network model:

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.

Incorporating the role of external signals:

Predictor model (subset of nodes):

Effect of     on       can appear in three different ways:

1. Incorporated in input

2. With a dynamic term
3. With a constant unit-term in     (binary matrix) 



Local direct method
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Examples for different roles of u: 

Dynamic term          can be left unmodelled  higher level of ``disturbances’’  
Alternative: estimate the term with measured input  



Local direct method – predictor model
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Based on: 

we construct the (parametrized) prediction error: 



Local direct method
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Determining the different roles of excitation signals:

Given      and     , the sets     and      are determined through graphical conditions[1,2,3]:

• For             ,                 if all loops around       pass through a node in  

[1] Simple case where set 
[2] Ramaswamy, PhD thesis 2022; 
[3] VdH et al, IFAC 2023. 

• if all loops around       pass through a node in       and all paths from                       
to        pass through a node in      .

• if 

• For                         ,                 if        has a direct or unmeasured path to      



Consistency result
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[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.
[2] VdH et al., CDC-2020.



Data-driven modeling in linear dynamic networks36

.

Data-informativity



Then a quasi-stationary data sequence                          is informative with respect to 

Predictor model:                                               

Data informativity (classical definition)

for almost all 
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[1] L. Ljung, Englewood Cliffs, NJ: Prentice-Hall, 1999

with

if for any two models in       :  

A sufficient condition for this is that      is persistently exciting:  

for a model set     



Single module identification – data-informativity
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Predictor model equation:

Typical data-informativity condition: 

[2] K.R. Ramaswamy et al., IEEE-TAC, 2021; VdH and Ramaswamy, CDC 2020.

for almost all

inputs of the predictor model 

Rank-based condition can generically be satisfied based on a graph-based condition
[1] L. Ljung, 1989.

[3] X.Bombois et al., Automatica, 2023.



Data informativity (path-based condition)
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[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.

A signal                               with     persistently exciting, 
is persistently exciting iff has full row rank.  

This condition can be verified in a generic sense,  
by considering the generic rank of     [1],[2] 

linking to the maximum number of vertex disjoint paths between inputs and outputs 

has generic full row rank if the number of vertex disjoint paths
satisfies



Data informativity (path-based condition)
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persistently exciting holds generically if there are 
vertex disjoint paths between external signals            and                                     

For persistence of excitation of     this implies: 

and since                are external signals too, this is equivalent to: 

vertex disjoint paths between                             and  



Data informativity (path-based condition)
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vertex disjoint paths between                             and  

Excitation is provided by all external signals             except for 



Every node signal in       requires an excitation in
having a 1-transfer to  

Data informativity (path-based condition)
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Specific result for networks with full rank disturbances: 

• For every node in        we need a u-excitation

• More expensive experiments with growing # outputs

• A node         whose excitation appears in        can never be sufficiently excited

[1] VdH et al., IFAC 2023.



Data-informativity - Example
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Loop



Data-informativity - Example
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Loop dynamics

can never be 
sufficiently excited!

Loop



Data informativity (path-based condition)

45

Observations: 

• Since         is an output, unmeasured disturbances 
on        are modelled through a noise model. 
Their white noise sources are not available 
anymore more for excitation of     . 

• Data-informativity cannot always be guaranteed 
by providing a sufficient number of external 
excitation signals.

• (Additional) structural conditions on the predictor 
model need to be satisfied



Every node signal in       requires an excitation in
having a 1-transfer to  

Data informativity (path-based condition)
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Specific result for networks with full rank disturbances: 

Additional condition for a node       to be effectively ``excitable’’: 

Every loop around a node in        should be blocked by a node in       .  

This additional graph-based condition needs to be integrated in 
the predictor model algorithms

[1] VdH et al., IFAC 2023 



Data-informativity - Example
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Block Loop

Every loop around  a node in            should be blocked by a node in 



2-node example 
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Target: identify          with direct method 

Predictor model: 

Both       and       contribute to       data informativity condition is not satisfied

Step 1:

Step 2: Change predictor model to:

Both       and       contribute to       data informativity condition is satisfied

Both      and      need to be present, while an indirect method requires only      ! 



Data informativity - summary
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for almost all

vertex disjoint paths between                             and  

Every loop around a node in        should be blocked by a node in       .  



Data informativity - extension
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So far, data-informativity conditions have been based on 
consistent estimation of the full predictor model, i.e. all 
entries in  

It appears that the conditions can be further relaxed when 
focusing on the target module only!

[1] VdH et al., in preparation, 2024 

I.e., rather than requiring:

we can require:

These single module DI conditions are also implemented in the app/toolbox.



Data-driven modeling in linear dynamic networks51

.

Algebraic loop condition



Algebraic loop condition
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[1] Ramaswamy et al., TAC 2021

Well known in a standard closed-loop problem with the direct method:
should be strictly proper, in the system and in the parametrized model. 

In the local direct method for networks this becomes:

The following paths should have at least a delay:



Data-driven modeling in linear dynamic networks53
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Summary



Consistency result
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[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.
[2] VdH et al., CDC-2020.



Summary local direct method for single module ID
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[1] Ramaswamy, VdH, Dankers, CDC 2019.
[2] Rajagopal et al., CDC 2021.



Identifiability and data informativity
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